The Birth of the Universe ~ Ideas

This extremely distant protocluster represents a group of galaxies forming very early in the universe, about only a billion years after the Big Bang.Credit: Subaru/ P. Capak (SSC/Caltech)

Creation may refer to:
In religion, philosophy, science and technology

See also

Creationism

“Creationism” can also refer to creation myths, or to a concept about the origin of the soul. Creation science refers to the pseudoscience movement in the United States.[1]
For the movement in Spanish literature, see Creacionismo.

Creationism is the belief that the Universe and living organisms originate “from specific acts of divine creation.”[2][3] For young Earth creationists, this includes a literalistic reading of the Book of Genesis and the rejection of evolution.[4] As science developed during the 18th century and forward, various views aimed at reconciling the Abrahamic and Genesis creation narratives with science developed in Western societies.[5] Those holding that species had been created separately (such as Philip Gosse in 1857) were generally called “advocates of creation” but were also called “creationists,” as in private correspondence between Charles Darwin and his friends. As the creation–evolution controversy developed over time, the term “anti-evolutionists” became common. In 1929 in the United States, the term “creationism” first became associated with Christian fundamentalists, specifically with their rejection of human evolution and belief in a young Earth—although this usage was contested by other groups, such as old Earth creationists and evolutionary creationists, who hold different concepts of creation, such as the acceptance of the age of the Earth and biological evolution as understood by the scientific community.[4][6][7]

Today, the American Scientific Affiliation, a prominent religious organisation in the US, recognizes that there are different opinions among creationists on the method of creation, while acknowledging unity on the Abrahamic belief that God “created the universe.”[8][9] Since the 1920s, literalist creationism in America has contested scientific theories, such as that of evolution,[10][11][12] which derive from natural observations of the Universe and life. Literalist creationists[13] believe that evolution cannot adequately account for the history, diversity, and complexity of life on Earth.[14] Fundamentalist creationists of the Christian faith usually base their belief on a literal reading of the Genesis creation narrative.[13][15] Other religions have different deity-led creation myths,[note 1][16][17][18] while different members of individual faiths vary in their acceptance of scientific findings.

When scientific research produces empirical evidence and theoretical conclusions which contradict a literalist creationist interpretation of scripture, young Earth creationists often reject the conclusions of the research[19] or its underlying scientific theories[20] or its methodology.[21] This tendency has led to political and theological controversy.[10] Two disciplines somewhat allied with creationism—creation science and intelligent design—have been labelled “pseudoscience” by scientists.[22][23] The most notable disputes concern the evolution of living organisms, the idea of common descent, the geological history of the Earth, the formation of the solar system and the origin of the universe.[24][25][26][27]

Theistic evolution, also known as evolutionary creationism, reconciles theistic religious beliefs with scientific findings on the age of the Earth and the process of evolution. It includes a range of beliefs, including views described as evolutionary creationism and some forms of old Earth creationism, all of which embrace the findings of modern science and uphold classical religious teachings about God and creation.[28][29]

~~~

The Universe: Big Bang to Now in 10 Easy Steps

by Denise Chow, SPACE.com Staff Writer   |   October 18, 2011 05:00pm ET

space.com

How the Universe Came to Be

The broadly accepted theory for the origin and evolution of our universe is the Big Bang model, which states that the universe began as an incredibly hot, dense point roughly 13.7 billion years ago. So, how did the universe go from being fractions of an inch (a few millimeters) across to what it is today?Here is a breakdown of the Big Bang to now in 10 easy-to-understand steps.
The Big Bang: Solid Theory, But Mysteries Remain

10.  How It All Started

Credit: NASA/WMAP

The Big Bang was not an explosion in space, as the theory’s name might suggest. Instead, it was the appearance of space everywhere in the universe, researchers have said. According to the Big Bang theory, the universe was born as a very hot, very dense, single point in space.Cosmologists are unsure what happened before this moment, but with sophisticated space missions, ground-based telescopes and complicated calculations, scientists have been working to paint a clearer picture of the early universe and its formation. [Full Story]A key part of this comes from observations of the cosmic microwave background, which contains the afterglow of light and radiation left over from the Big Bang. This relic of the Big Bang pervades the universe and is visible to microwave detectors, which allows scientists to piece together clues of the early universe.In 2001, NASA launched the Wilkinson Microwave Anisotropy Probe (WMAP) mission to study the conditions as they existed in the early universe by measuring radiation from the cosmic microwave background. Among other discoveries, WMAP was able to determine the age of the universe — about 13.7 billion years old.
Hubble Spots 500 Galaxies in Early Universe

9.  The Universe’s First Growth Spurt

Credit: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team

When the universe was very young — something like a hundredth of a billionth of a trillionth of a trillionth of a second (whew!) — it underwent an incredible growth spurt. During this burst of expansion, which is known as inflation, the universe grew exponentially and doubled in size at least 90 times.“The universe was expanding, and as it expanded, it got cooler and less dense,” David Spergel, a theoretical astrophysicist at Princeton University in Princeton, N.J., told SPACE.com. [Full Story]After inflation, the universe continued to grow, but at a slower rate. As space expanded, the universe cooled and matter formed.
Astronomers Detect First Split-Second of the Universe

8.  Too Hot to Shine

Credit: NASA/WMAP

Light chemical elements were created within the first three minutes of the universe’s formation. As the universe expanded, temperatures cooled and protons and neutrons collided to make deuterium, which is an isotope of hydrogen. Much of this deuterium combined to make helium.For the first 380,000 years after the Big Bang, however, the intense heat from the universe’s creation made it essentially too hot for light to shine. Atoms crashed together with enough force to break up into a dense, opaque plasma of protons, neutrons and electrons that scattered light like fog.
New Sky Map Could Help Reveal How Universe Formed

7.  Let There Be Light

Credit: ESA/ LFI & HFI Consortia

About 380,000 years after the Big Bang, matter cooled enough for electrons to combine with nuclei to form neutral atoms. This phase is known as “recombination,” and the absorption of free electrons caused the universe to become transparent. The light that was unleashed at this time is detectable today in the form of radiation from the cosmic microwave background.Yet, the era of recombination was followed by a period of darkness before stars and other bright objects were formed. [Full Story]
Giant Galaxy Cluster Seen in Early Universe

6.  Emerging from the Cosmic Dark Ages

Credit: ESA XMM-Newton/EPIC, LBT/LBC, AIP (J. Kohnert)

Roughly 400 million years after the Big Bang, the universe began to come out of its dark ages. This period in the universe’s evolution is called the age of re-ionization.This dynamic phase was thought to have lasted more than a half-billion years, but based on new observations, scientists think re-ionization may have occurred more rapidly than previously thought. [Full Story]During this time, clumps of gas collapsed enough to form the very first stars and galaxies. The emitted ultraviolet light from these energetic events cleared out and destroyed most of the surrounding neutral hydrogen gas. The process of re-ionization, plus the clearing of foggy hydrogen gas, caused the universe to become transparent to ultraviolet light for the first time.
This Hubble Space Telescope image of the M15 Globular Cluster spaces about 120 light years. Over 100,000 stars make up this relic from the early years of our galaxy, and the ball of stars continues to orbit the Milky Way's center. M15 lies about 35,000 li

5.  More Stars and More Galaxies

Credit: ESA, Hubble, NASA

Astronomers comb the universe looking for the most far-flung and oldest galaxies to help them understand the properties of the early universe. Similarly, by studying the cosmic microwave background, astronomers can work backwards to piece together the events that came before. [Full Story]Data from older missions like WMAP and the Cosmic Background Explorer (COBE), which launched in 1989, and missions still in operation, like the Hubble Space Telescope, which launched in 1990, all help scientists try to solve the most enduring mysteries and answer the most debated questions in cosmology.
The planets of the solar system as depicted by a NASA computer illustration. Orbits and sizes are not shown to scale.

4.  Birth of Our Solar System

Credit: NASA

Our solar system is estimated to have been born a little after 9 billion years after the Big Bang, making it about 4.6 billion years old. According to current estimates, the sun is one of more than 100 billion stars in our Milky Way galaxy alone, and orbits roughly 25,000 light-years from the galactic core.Many scientists think the sun and the rest of our solar system was formed from a giant, rotating cloud of gas and dust known as the solar nebula. As gravity caused the nebula to collapse, it spun faster and flattened into a disk. During this phase, most of the material was pulled toward the center to form the sun. [Solar System Infographic: From the Inside Out]

Colossal Cosmic Collision Reveals Mysterious Dark Matter

3.  The Invisible Stuff in the Universe

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

In the 1960s and 1970s, astronomers began thinking that there might be more mass in the universe than what is visible. Vera Rubin, an astronomer at the Carnegie Institution of Washington, observed the speeds of stars at various locations in galaxies.Basic Newtonian physics implies that stars on the outskirts of a galaxy would orbit more slowly than stars at the center, but Rubin found no difference in the velocities of stars farther out. In fact, she found that all stars in a galaxy seem to circle the center at more or less the same speed. [Full Story]This mysterious and invisible mass became known as dark matter. Dark matter is inferred because of the gravitational pull it exerts on regular matter. One hypothesis states the mysterious stuff could be formed by exotic particles that don’t interact with light or regular matter, which is why it has been so difficult to detect.Dark matter is thought to make up 23 percent of the universe. In comparison, only 4 percent of the universe is composed of regular matter, which encompasses stars, planets and people.
Chubby Galaxy Cluster Suggests Dark Energy Was Stronger Long Ago

2.  The Expanding and Accelerating Universe

Credit: NASA, ESA, D. Coe (NASA Jet Propulsion Laboratory/California Institute of Technology, and Space Telescope Science Institute), N. Benitez (Institute of Astrophysics of Andalusia, Spain), T. Broadhurst (University of the Basque Country, Spain), and H. Ford

In the 1920s, astronomer Edwin Hubble made a revolutionary discovery about the universe. Using a newly constructed telescope at the Mount Wilson Observatory in Los Angeles, Hubble observed that the universe is not static, but rather is expanding.Decades later, in 1998, the prolific space telescope named after the famous astronomer, the Hubble Space Telescope, studied very distant supernovas and found that, a long time ago, the universe was expanding more slowly than it is today. This discovery was surprising because it was long thought that the gravity of matter in the universe would slow its expansion, or even cause it to contract. [Full Story]Dark energy is thought to be the strange force that is pulling the cosmos apart at ever-increasing speeds, but it remains undetected and shrouded in mystery. The existence of this elusive energy, which is thought to make up 73 percent of the universe, is one of the most hotly debated topics in cosmology.
Accelerating Universe and Dark Energy Might Be Illusions

1.  Still a Lot to Learn

Credit: NASA

While much has been discovered about the creation and evolution of the universe, there are enduring questions that remain unanswered. Dark matter and dark energy remain two of the biggest mysteries, but cosmologists continue to probe the universe in hopes of better understanding how it all began.
It took quite a bit more than seven days to create the universe as we know it today. SPACE.com looks at the mysteries of the heavens in our eight-part series: The History & Future of the Cosmos. This is Part 3 in that series.

Leave a comment